\( Ax^2+ Bx+ C \) Üç Terimlisi

 

\( Ax^2+ Bx+ C \) Üç Terimlisi

 

1. Son Terimden Faydalanarak Çarpanlara Ayırma:

 

\( A = 1 \) ise çarpımları \( C \) ye, toplamları \( B \) ye eşit olan iki sayı araştırılır.

\[
B = m + n \quad \text{ve} \quad C = m \cdot n \quad \text{olmak üzere,}
\]

\[
x^2 + Bx + C = (x + m)(x + n) \quad  \text{dir. }
\]

 

Örnekler:

\( \bullet \quad   x^2 – 5x – 50 = (x – 10)(x + 5) \)

\[
\begin{array}{c c c}
= x^2 &- \;  5x \;  & \; -50 \\
&\swarrow \searrow & \swarrow \searrow \\
& -10 +5 & -10 \cdot 5
\end{array}
\]

\( \bullet \quad  x^2 – (a + 2)x + 2a = (x – 2)(x – a) \)

\[
\begin{array}{c c c}
= x^2 &- \;  (a+2) x \;  & \; +2 \cdot a \\
&\swarrow \searrow & \swarrow \searrow \\
& a + a^2 & a \cdot  a^2
\end{array}
\]

 

\( \bullet \quad  x^2 + (a + a^2)x + a^3 = (x + a)(x + a^2) \)

\[
\begin{array}{c c c}
= x^2 &- \;  (a + a^2)x \;  & \; + a^3  \\
&\swarrow \searrow & \swarrow \searrow \\
& a + a^2 & a. \cdot  a^2
\end{array}
\]

 

\( \bullet \quad x^2 + 2ax – 3a^2 = (x – a)(x + 3a) \)

 

\[
\begin{array}{c c c}
= x^2 &- \;  2ax \;  & \; -3 a^2  \\
&\swarrow \searrow & \swarrow \searrow \\
& -a + 3a & -a. \cdot  3a
\end{array}
\]

 

\( \bullet \quad   4^x – 2^{x+1} – 3 = (2^x)^2 – 2 \cdot 2^x – 3 \)

\[2^x = t \quad  \text{dönüşümü yapılırsa}      \]

\[
\begin{array}{c c c}
(2^x)^2- 2 \cdot  2^x – 3  = t^2 &- \;  2t \;  & \; -3   \\
&\swarrow \searrow & \swarrow \searrow \\
& -3+1  & -3 \cdot  1
\end{array}
\]

 

\( \bullet \quad  x^6 + 10x^3 + 21 = (x^3)^2 + 10x^3 + 21 \)

\[
x^3 = t \quad \text{dönüşümü yapılırsa,}
\]

\[
\begin{array}{c c c}
x^6 + 10x^3 + 21 = t^2 &+ \;  10t \;  & \; +21  \\
&\swarrow \searrow & \swarrow \searrow \\
& 3+7  & 3 \cdot  7
\end{array}
\]

\( \bullet \quad  x – 5\sqrt{x} + 6 = (\sqrt{x})^2 – 5\sqrt{x} + 6 \)

\[ \sqrt{x} = t \quad \text{dönüşümü yapılırsa,} \]

\[
\begin{array}{c c c}
(\sqrt{ x})^2  – 5\sqrt{x} + 6 = t^2  &- \;  5t \;  & \; +6  \\
&\swarrow \searrow & \swarrow \searrow \\
& -2+ (-3)  & -2 \cdot  (-3)
\end{array}
\]

\[=  (\sqrt{x  }  -2 )   ( \sqrt{x  } -3   )  \]

 

2. İlk ve Son Terimden Faydalanarak Çarpanlara Ayırma:

 

\( A \neq 1 \) ise   \( A = p.q \),     \( C = m.n \)    ve    \( B = p.n + q.m \)  olacak şekilde dört sayı araştırılır.

\[
Ax^2 + Bx + C = (px + m)(qx + n)
\]

\[
\begin{array}{c c c}
= Ax^2  &+ \;  Bx \;  & \; +C  \\
\Downarrow & \Uparrow &  \Downarrow \\
px&   & m \\
&\searrow  \nearrow  \\
qx&              & n \\
\hline
&px \cdot n + qx \cdot m = Bx
\end{array}
\]

dir.

 

Örnekler:

\( \bullet \quad  6x^2 + 19x + 15 = (3x + 5)(2x + 3) \)

\[
\begin{array}{c c c}
= 6x^2  &+ \;  19x \;  & \; +15  \\
\Downarrow & \Uparrow &  \Downarrow \\
3x&   & 5 \\
&\searrow  \nearrow  \\
2x&              & 3 \\
\hline
&3x \cdot 3 + 2x \cdot 5 = 19x \quad  \text{ortadaki terim}
\end{array}
\]

 

\(  \bullet \quad 6x^2 + 11x – 2 = (6x – 1)(x + 2) \)

\[
\begin{array}{c c c}
= 6x^2  &+ \;  11x \;  & \; -2 \\
\Downarrow & \Uparrow &  \Downarrow \\
6x&   & -1 \\
&\searrow  \nearrow  \\
x&              & 2 \\
\hline
&6x \cdot 2 + 2x \cdot (-1) = 11x \quad  \text{ortadaki terim}
\end{array}
\]

 

\( \bullet \quad a^2 x^2 + (ab – a)x – b = (ax – 1)(ax + b) \)

\[
\begin{array}{c c c}
= a^2x^2  &+ \;  (ab-a)x \;  & \; -b \\
\Downarrow & \Uparrow &  \Downarrow \\
ax&   & -1 \\
&\searrow  \nearrow  \\
ax&              & b \\
\hline
&ax \cdot b + ax \cdot (-1) = (ab-a)x \quad  \text{ortadaki terim}
\end{array}
\]

 

\( \bullet \quad 6a^2 + ab – 2b^2 = (2a – b)(3a + 2b) \)

\[
\begin{array}{c c c}
= 6a^2  &+ \;  ab \;  & \; -2b^2 \\
\Downarrow & \Uparrow &  \Downarrow \\
2a&   & -b \\
&\searrow  \nearrow  \\
3a&              & 2b \\
\hline
&2a \cdot 2b + 3a \cdot (-b) = ab \quad  \text{ortadaki terim}
\end{array}
\]

 

\( \bullet \quad a^{2x+1} + (a+2)a^x + 2 = a(a^x)^2 + (a+2)a^x + 2 \)

\[ a^x = t \quad  \text{dönüşümü yapılırsa } \]

\[ a(a^x)^2+ ( a+ 2) a^x +2 \]

\[
\begin{array}{c c c}
= at^2  &+ \; (a+2)t  \;  & \; 2 \\
\Downarrow & \Uparrow &  \Downarrow \\
at&   & 2 \\
&\searrow  \nearrow  \\
t&              & 1 \\
\hline
&at \cdot 1 + t \cdot 2 = (a+2) t \quad  \text{ortadaki terim}
\end{array}
\]

\[ a^{2x+1} + (a+2)a^x + 2 = (a^x+1 ) (a^{x+1}+ 2 ) \]

 

\( \bullet \quad 2x – \sqrt{x} – 1 = (2\sqrt{x} + 1)(\sqrt{x} – 1) \)

\[
\begin{array}{c c c}
2x  &- \;  \sqrt{x  }  \;  & \; -1 \\
\Downarrow & \Uparrow &  \Downarrow \\
2\sqrt{x  } &   & 1 \\
&\searrow  \nearrow  \\
\sqrt{x  } &              & -1 \\
\hline
& 2\sqrt{x  } \cdot  (-1) + \sqrt{x  } \cdot  1 = – \sqrt{x  }  \quad  \text{ortadaki terim}
\end{array}
\]

 

\( \bullet \quad 3x^6 + 4x^3 + 1 = (3x^3 + 1)(x^3 + 1) \)

\[
= (3x^3 + 1)(x+1)(x^2 – x + 1) \text{ dir.}
\]

\[
\begin{array}{c c c}
3x^3  &+ \;  4x^3  \;  & \; 1 \\
\Downarrow & \Uparrow &  \Downarrow \\
3x^3&   & 1 \\
&\searrow  \nearrow  \\
x^3&              & 1 \\
\hline
& 3 x^3\cdot  (1) + x^3 \cdot  1 = 4x^3 \quad  \text{ortadaki terim}
\end{array}
\]